Living close to forests enhances people's perception of ecosystem services in a forest-agricultural landscape of West Java, Indonesia

Dendi Muhamad^a, Satoru Okubo^a, Koji Harashina^b, Parikesit^c, Budhi Gunawan^c, Kazuhiko Takeuchi^a

^a Graduate School of Agricultural and Life Sciences, The University of Tokyo;
^b Faculty of Agriculture, Iwate University;
^c Institute of Ecology, Padjadjaran University

Background

Source: http://cifaljeju.org/

Our study also

focused on

"conservation"

& "connection"

Source: http://asia-parks.org/

CBD-COP 10 (Aichi Target by 2020):

- Conserve at least 17% of terrestrial and 10% of coastal and marine areas through protected zones;
- Restore at least 15% of degraded ecosystems;
- Theme of 1st Asia Park Congress: "Connection":
- between people and nature;

.

- between cultural, spiritual, and natural values;
- between park and wider landscape/seascape

Satoyama landscape and other satoyama-like)
Perceptions of local people about particular landscape elements as sources of ecosystem services not only within, but also outside of protected areas:

- within a forest to agricultural landscape (satoyama-like)
- established sustainable landscape management that fulfill conservation objectives & reduce poverty

Problem identification

- Urgent to maintain ecosystem services & fulfill food production:
 - Local people dependent on surrounding landscape (Fagerholm et al. 2012)
 - The landscape provide bundle of ecosystem services (ESs) for free: (from natural resources to cultural/spiritual value) (Dolisca et al. 2007)
 - Forest conversion & intensification threaten the provision of ecosystem services (Jackson et al. 2007)
- Lack of landscape approach:
 - Various landscape elements provide bundle of services
 - Understand roles of human-modified landscapes: within & beyond protected areas (Chazdon et al., 2009)
 - Local people as key stakeholder (use, manage, & modify landscape) had to be included (*Campos et al. 2012*)
- Growing demand to incorporate social dimension:
 - Mostly biophysical quantification or economic valuation
 - Need to understand how people benefits from ecosystem & perceive ESs (Anton et al., 2010)
 - Crucial to identify which ESs & landscape elements are more preferable (*Martín-López et al., 2012*)

Objectives

- Assessed perceptions of local people about ESs:
 - Identify ESs & associated landscape elements are used & perceived
 - Quantify socioeconomic factors affect perception of ESs
 - Assess differences in landscape elements as sources of ESs
- > A case of forest–agricultural landscape in West Java:
 - Opportunity to add forest protection areas had been exhausted
 - Protected areas are surrounded by high human population
 - Poor people dependent on various landscape elements for ESs

Goals

Frame of study

Study site

Schematic of a gradient of forest–agricultural landscape in study site: mosaic of natural and human-modified elements

Methods

Data collection:

- Preliminary survey to key informants
- Information collected:
- Identify ESs that actually beneficial & appreciated
- Identify landscape element as the source of ESs

Structured interview techniques, information collected:

- Respondent profile:
- Individual perception about type of ESs
- Individual perception about landscape element as source of ESs
- Sampled 138 households (47%) engaged to agriculture
- Samples distributed in 18 hamlets

Data analysis 1:

General pattern of people perception

Table 1. Summary for each respondent

ESs	Resp. 1	Resp.1 Source	•••	Resp.138	Resp.138 Source
ES 1	Yes	F, TP		Yes	F
ES 23	Yes	F, TP, AF		No	
Total: direct	10			9	
Total: indirect	10			3	For GLMs
Total: all	20			12	

Table 2. Summary for each ES

	Number of respondent (answering 'yes')							
Ecosystem services	Total	Landscape element (multiple answer)						
		Remnant forest	Tree plantation	Agroforest	Agriculture			
ES 1	57	17	43	-	-			
ES 23	53	28	3	43				
Cumulative number	138	90	75	125	45			

Data analysis 2: GLMs (Generalized Linear Models)

Socioeconomic factors affecting the degree of individual perception

Response var.

- Total: All ESs
- Total: direct ESs
- Total: indirect ESs

Generalized linear models (**GLMs**)

- ➤ N = 138 in 18 hamlets
- Logit link function followed a binomial distribution
- Model selection based on AICc

(Burnham & Anderson, 2002)

Explanatory var.

Nominal variable:

- -Place of origin
- -Residential location (hamlet)
- -Level of formal education -Main occupation

Ordinal variable:

- -Age (years) -Owned agroforest (ha)
- -Owned agriculture (ha)
- -Owned ruminant (individual)

Data analysis 3: Proportion differences of perceived sources

Accessibility to remnant forest

Which landscape elements are perceived as source of each ES

Respondents classified into 2 groups

Based on proximity of their hamlet to the remnant forest:

(Threshold **1.5 km** that divide the number of respondents evenly)

- "Close" groups (< 1.5 km): 71 respondents
- "Far" groups (> 1.5 km): 67 respondents
- Fisher's exact test
- Compare proportional differences of perceived landscape elements for each ES between 2 groups

Results

High variation in degree of appreciation among ESs

Degree of individual appreciation different between direct & indirect services

Individual perception on **direct** services > indirect services

Degree of individual appreciation varied among landscape element types

Agroforest > remnant forest as source of multiple services

Result of GLMs

Socioeconomic factors on degree of individual perception on ESs

Best model with the lowest AICc:

	Coefficients of determinant factors								
Response variable	Age	Original villagers	Hamlet	Education	Number of Livestock	Area of agric. land	Area of agroforest		
All ESs		0.641	√		0.172	0.298			
Direct ESs		0.606	_		0.217		0.259		
Indirect ESs		0.804	√		0.134	0.371			

People **originated** from present hamlet with **higher socioeconomic** status perceived higher number of ESs; especially indirect ESs

Effect of hamlet can be interpreted as distance to forest 16

- People living close to forest perceived ecosystem services > who live far to forest;
- Effect is appear stronger in indirect services

Influence of accessibility to forest to perceived source of ESs 17

Influence of accessibility to forest to perceived source of ESs

Discussion

Results that concomitant with previous study:

- > People highly perceived direct & indirect ESs (Martín-López et al. 2012)
- Direct ESs > indirect ESs (Fagerholm et al. 2012; Hartter 2010)
 - Food & fuelwood are fundamental for local people (Fagerholm et al. 2012)

Highlighted findings:

Cultural services perceived by people that live close & far from forest

- Source of cultural services provided by remnant forest & tree plantations
- > People valued biological regulation services, but the number is low
- Agroforest as complementary source of many ESs
 - Key landscape element that harmonize food, conservation & poor people (Islam 2012; Jose 2009; Nath et al 2005)
- Existence of destructive activity
 - Bird collection to be sold as pet still exists
 - Instigated by direct economic benefit

Discussion

	Provisioni	ng services		Regulating services	
Landscape element types	Live close to forest	Live far to forest	Cultural services	Live close to forest	Live far to forest
Remnant forest	\checkmark		\checkmark	\checkmark	
Tree plantation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Agroforest		\checkmark		\checkmark	\checkmark
Agricultural land	\checkmark	\checkmark			

Conclusion

Forest is the main source:

- $\checkmark\,$ To continuously gain appreciation & perception about ESs
- Closeness to forest:
- ✓ Enhance people appreciation & perception about ESs
- Potential role of Agroforests:
- $\checkmark\,$ As alternative source to increase appreciation & perception about ESs
- Maintaining landscapes composed of various element types is important to ensure a bundle of ESs & receive more benefit

Recommendation:

- Protection of remnant forests should be prioritized:
 - doesn't mean disentanglement of people from forest (maintain accessibility)
 - avoiding extractive/destructive activities
 - allowing people to live close to forest, it will increase people sensitivity
 - providing non-formal education about sustainable use of resources
 - devising ways of earning income not from forest, (e.g. from agroforest)

Enhancement of Agroforestry (planting more trees-fruiting, timber, & native)

Maintain vegetation structure of **tree plantation** + REDD + ecotourism

Thank you very much for your attention